Tag Archives: Xerox

Printing Nano-Electronics on Everything: Phones, Planes, Fish Tanks

Foxconn 3D Print a Phone

Imagine you could print a thin layer of micro-electronics on any surface. With 3D printing, this is now a reality – reports the Economist – and that makes any surface a smart surface.

It’s not traditional copper, but rather micro-building blocks of silver.

Silver is a better conductor of electricity than copper, which is typically used in circuits, but silver is expensive and tricky to print because it melts at 962°C. However, by making silver into particles just five nanometres (billionths of a metre) in size, Xerox has produced a silver ink which melts at less than 140°C. That allows it to be printed using inkjet and other processes relatively cheaply, says Paul Smith, the director of research at the laboratory. Only minuscule quantities of silver are used and there is no waste, unlike chemical-etching processes.

Xerox’s PARC research centre in Palo Alto, California, is developing ways to use such inks. These can print circuits for various components, including flexible display screens, sensors and antennae for radio-frequency security tags. With the emergence of additive-manufacturing techniques, it starts to become possible to print such things directly onto the product itself, says Janos Veres, the manager of PARC’s printed-electronics team.

So how difficult would it be to print a phone complete with all its electronic gubbins? Optomec is developing applications which could provide some of the necessary steps. Besides antennae these include edge circuits for the screen, three-dimensional connections for chips, multiple-layer circuits and touch-screen parts. It would also be possible to print the battery. The biggest challenge would be to print the chips that are the brains of the phone. These contain millions of transistors in a square millimetre and are at present made in silicon-fabrication plants costing $10 billion or more. Yet embedding even some circuitry means phones could be made slimmer, as well as reducing the costs of materials and assembly.

The impact of this research is astounding. Now any glass surface can become a phone, planes can have intelligent electronics on their wings, and fish tanks can observe and adjust the water temperature.

 

Read the full story at the Economist.

Foxconn construction photo by Bert van Dijk used under Creative Commons license.

Guest Post: 3D Printing Silver Ink – Circuits, Roll-Up Computers and More

XRCC NanoAg

Editor’s Note: This guest post is written by Chris Waldo, who is a technology enthusiast and copywriter with a focus in 3D printing. He is currently working as the Content Manager for the 3D printing network, Kraftwurx. Follow him on Facebook or Twitter. We previously covered Chris’ work about renewable energy.

Xerox has recently developed a new type of silver “ink” which has a few qualities to it that are truly unique. This silver has been engineered to melt at a temperature lower than plastic, film, and various fabrics. What is significant about this? With a lower melting temperature, Xerox’s silver can be 3D printed on a wider array of surfaces. Keep in mind, silver can be one of the key elements to circuits, as it is highly conductive.

“With the development of a new silver ink, Xerox scientists have paved the way for commercialization and low-cost manufacturing of printable electronics. Printable electronics offers manufacturers a very low-cost way to add “intelligence” or computing power to a wide range of surfaces such as plastic or fabric.” (Source: Xerox)

Assuming that this silver can be melted onto various surfaces without melting them, we can approach the possibility of 3D printing circuits onto fabrics, plastics, and film. Through Xerox’s breakthrough, we have the potential to 3D print “intelligence” onto a wide variety of products. Let me elaborate.

If a circuit can be placed on a surface, an electrical current can flow through it. This current will be necessary for powering various devices. As you read this article, look around. Imagine placing a miniature-computer on the objects around you. How powerful could this technology be? Small applications such as a “smart” medical cabinet, or a highly efficient kitchen could come about. Fun knick-knacks with electric capabilities will be cheaper & easier to make. This is pretty interesting I suppose, but it’s small. Let’s talk big.

The first potential application I want to discuss might cause you to shake your head. I’m talking about roll-up computers. Imagine having a sales-representative pulling out a computerized display from his or her briefcase. This display would be “rolled” onto the table for a presentation. Prospective clients would see all necessary graphics & visuals from this miniature-roll-up-computer. Sensors are also an application of this technology; imagine having a miniature touch-computer that could be rolled across the table for a presentation. Sound interesting?

Another potential application of this technology would be the creation of PV solar cells at a much less expensive rate. This kind of thing foreshadows a much brighter future within renewable energy. Assuming film would be on the build tray, Xerox’s silver would potentially allow for the fabrication of solar cells! This would be much less expensive in comparison to silicon cells. For an in depth explanation of 3D printed solar cells, check out this article.

Photovoltaic PV
(photo credit: Solarinsolation)

The economics of Xerox’s silver ink is one of the most significant aspects presented. This technology is cheap! Currently, silicon is the leader in manufacturing “intelligence” onto various small gadgets and products. This material is expensive, and the process of refining silicon is very daunting. However, Xerox’s new silver “ink” has the potential to dominate silicon in more ways than one; silver ink is much more conductive, it is much less expensive, and it can be applied in thinner layers. The only thing missing for this ink to succeed is industry coverage, and capital.

Similar to the second application, here’s another interesting concept initiated by Aaron Saenz – portable, roll out solar panels. Imagine pulling up to work, rolling out a foldable solar panel on your dashboard, and leaving. You would come back later that afternoon to a charged electric vehicle.

“If we could have printable circuits, what would that mean for the average consumer? Imagine buying a roll of fabric that was also a solar cell surface. Spread like a tarp it could provide portable energy almost anywhere in the world.” (Source: Aaron Saenz)

The same concept could be applied to various devices, for example: water wells associated with irrigation, pump-jacks on oil wells, popup campers, cameras, or anything you use outside that needs power!

Another what-if-question I’d like to pose would be the use of Xerox’s silver ink within Objet’s multi-material printers. Some of Objet’s printers already offer 7 materials in a print; what if Objet added one more material – particularly a material that offers the layer-by-layer creation of circuits? This could lead to the development of gadgets and gizmos that require little to no touching up before use.

All in all, this technology offers no ceiling – it could have unlimited potential. As product developers, engineers, and visionaries work together with this technology, we could be moving into a new world of intelligent products. For this silver ink technology to succeed, we need to do our best to market this breakthrough to the manufacturing powerhouses. Perhaps within the next few years – we could start seeing it come into our everyday lives.

XRCC NanoAg photo credit by Xerox.

If you would like to submit a guest post to On 3D Printing, please send an email to ideas@on3dprinting.com.